Overview of Concrete Pavement Research at TFHRC

CP Road Map Executive Committee
Chicago, IL - January 11, 2011

Ahmad Ardani, P.E
Research Materials Engineer
FHWA-TFHRC
FHWA’s Pavement Program
Six Focus Areas

- Pavement Design and Analysis
- Materials and Construction Technology
- Pavement Management & Preservation
- Pavement Surface Characteristics
- Construction and Materials Quality Assurance
- Environmental Stewardship
TFHRC Pavement Research Teams

- Pavement Design & Construction
- LTPP
- Pavement Materials
- Exploratory Advance Research (EAR)
Pavement Design & Construction

- Pavement Design, Management
- Performance Modeling
- MEPDG Implementation
- QA/QC, PBS
- NDT, Wireless, Forensic

Program Manager: Katherine Petros
Pavement Design & Construction
PCCP Research Activities

- Remaining Service Life (Mactec- Nadarajah Siva)
 - Structural Condition, US, Safety
 - Project/Network

- Smart Sensors (MSU- Fred Faridazar)
 - Design/Develop wireless sensor to collect
 - Loading, Stress/Strain & Temp Data
 - Facilitate pavement repair/rehab & preservations
Pavement Design & Construction

PCCP Research Activities

- **Upgrade HIPERPAV III** (Transtec- Fred Faridazar)
 - To allow automatic download of National Weather Service data
 - Incorporate slag aggregate as an input

- **PaveSpec Enhancement** (ARA- Rick Bradbury)
 - Incorporate MEPDG’s PCC Models into PaveSpec
 - Work with DOTs to implement PRS statewide
Pavement Design & Construction

PCCP Research Activities

- Quantifying Sustainability *(Not Advertised- Nadarajah Siva)*
 - Select Pavement type incorporating Environmental Factors + LCCA

- Pavement Friction *(VTRC-Jim Sherwood)*
 - Friction Thresholds
 - Most suitable equipment
 - Work with States to collect data
 - Develop FMS – integrate to PMS

- FWDs In MEPDG *(ApTech- Nadarajah Siva)*
 - Developing guidelines
LTPP Program

- Since 1987
- 2500 Test Section Covers:
 - GPS, Monitors performance
 - In-service Pavements
 - SPS, Examines Effectiveness
 - Preventive Maintenance, Rehab, Construction Practices
- LTPP Database: MEPDG Cal/Valid

Program Manager: Aramis Lopez
Exploratory Advance Research (EAR)

- Advance High-Risk/Payoff Research
 - Nanoscale Research
 - Emerging Issues, Promotes Innovation

- Ultimate Goal:
 - Fill the Gap, Basic & Applied Research
 - Accelerate Adoption of Innovative Technologies, Methods & Materials

Program Manager: Dave Kuehn
EAR PCCP Research

- Exploring Cement Hydration Kinetics (J. Biernacki, TTU)
 - Roadmap, 10 Yr Effort
 - Contact: Rick Meininger

- Crack-Resistant Concrete (Z. Grasley, A&M U.)
 - SRCC: SF, MK, Carbon Nanotubes, Rice Husk Ash and Limestone Powder
 - Contact: Rick Meininger

- Benefits of High-Volume Flyash (J. Weiss, Purdue)
 - Incompatibilities: Prescreening, FA Treatment, Timing & Rate of Admixture addition
 - PBS, IC, Predicting Performance
 - Contact: Rick Meininger
Pavement Materials Research Team

- Innovative Solutions to Problems
 - In-house & Contract Research
 - State-of-the-art Equipment
 - Forensic Investigations

- Laboratories:
 - Concrete
 - Asphalt
 - Chemistry
 - Aggregate

Program Manager: Dr. Jack Youtcheff
Concrete Lab

Basic Equipments:
- Aggregate (AIMS II)
- Curing T./Walk-in Env. chambers
- Mechanical properties
- Setting time, Flow table, Air void
- Durability (MRD), RCP
- Petrography lab
Concrete Laboratories

- Advanced Equipment:
 - Isothermal Calorimetry
 - DSR
 - CTE
 - AASHTO TP 60
 - AASHTO T-336
 - Ruggedness
 - Key input in MEPDG for PCC
Concrete Pavement Materials
Research Strategic Plan

- Sustainable Concrete Pavement
 - Longer-Lasting
 - Achieving Balance
 - Economic
 - Environment – Reducing CO2 footprint
 - Social Impact
 - In-line with track 13 of CP-Road Map
Concrete Pavement Materials Research

- Fly Ash Workshop
- Fly Ash Characterization
- Coefficient of Thermal Expansion (CTE)
- Modification of ASTM C-78
- Impact of agg. size & quantity on CTE
- CP-Road Map
Steps Needed in the Research & Development of New Specifications for the Proper Inclusion of Fly Ash into Concrete Mixtures for Highway Pavements and Transportation Structures
Fly Ash Workshop objectives

- Forum: collaborate, exchange information
- Improve existing FA specification
- Dramatically increase FA
- Explore, Identify Research needs
Fly Ash Workshop Results

- Response to FA workshop: Enthusiastic
 - Attended by: Researchers, practitioners, DOTs, Power plant & FA suppliers
- Over 30 presentations presented, covering:
 - FA production, characterization, beneficiation
 - Proportioning, optimization, PBS
 - Pros & Cons (incompatibility)
 - HVFA, 100% based FA cementing materials

Summary Report: ftp://hrtsguest:hrtsguest@fhwaftp.fhwa.dot.gov/hrts/from
Development of a Framework for Proper proportioning & Characterization of FA/SCM in Concrete Mixes, Phase I
Flyash Use Dates Back to Early 1930s
- Highways, Airfields, Dams

Usage:
- Specifying 10 to 30 %
- Average Spec: 20% Substitution
Research Needs

- Protocol on the Use of Flyash
 - Where
 - When
 - Type
 - How Much (Optimum Dosage)

- Specification Exist (Percentages)
 - Empirical, Anecdotal
 - Arbitrary
Flyash Characterization

- **Question**: Adequacy of ASTM C 618 to:
 - Predict flyash behavior or performance?
 - Characterize flyash (F & C)?

- **Class F** (bituminous coal)
 - SiO2 + AL2O3 + Fe2O3 ≥ 70%

- **Class C** (sub-bituminous coal)
 - SiO2 + AL2O3 + Fe2O3 ≥ 50%
Objectives

- To use calorimeter DSR, XRF, SEM, XRD
 - Chemical, physical, Granulometric properties
 - Monitor hydration & strength gain
 - Characterize, identify incompatibilities
 - Increase dosage - pros & cons
 - Coordination with other researchers
 - Develop a framework for the use flyash
Progress to Date

- Developed experimental Design
- 18 different mixes
 - High & low alkali cement
 - F ash
 - High carbon/activated carbon FA
 - C ash
 - Dosages: 20%, 40% & 60
Proposed Quick in-house studies

- Miniaturization of Beams for Concrete Flexural Strength Testing
 - Modification of ASTM C78

- Examining the Impact of Aggregate size & quantity (FM) on CTE Measurements
End